
This paper describes a real solution,
implemented by OpenIntegra Ltd.

Case Memo:

Linux High-availability Fault-tolerance
Cluster, based on Heartbeat and Distributed

Redundant Block Device driver

Yovko Lambrev, <yovko@fsdl.org>
Stoian Mishinev, <mishinev@openintegra.com>

May-June 2004
Sofia - Plovdiv

OpenIntegra Ltd. &
Free Software Development Labs

www.openintegra.com
www.fsdl.org

Introduction

The term "cluster" is actually not very well defined and could mean
different things to different people. According to Webopedia, cluster
refers to a group of disk sectors. Most Windows users are probably
familiar with lost clusters--something that can be rectified by
running the defrag utility.

However, at a more advanced level in the computer industry, cluster
usually refers to a group of computers connected together so that
more computer power, e.g., more MIPS (millions instruction per
second), can be achieved or higher availability (HA) can be obtained.

High Availability (HA) Cluster

As more and more critical commercial applications move on the
Internet, providing highly available services becomes increasingly
important. One of the advantages of a clustered system is that it has
hardware and software redundancy. High availability can be
provided by detecting node or daemon failures and reconfiguring the
system appropriately so that the workload can be taken over by the
remaining nodes in the cluster.

Clusters in this category use various technologies to gain an extra
level of reliability for a service. Companies such as Red Hat,
TurboLinux and PolyServe have cluster products that would allow a
group of computers to monitor each other; when a master server
(e.g., a web server) goes down, a secondary server will take over the
services, similar to "disk mirroring" among servers.

In fact, high availability is a big field. An elegant highly available
system may have a reliable group communication sub-system,
membership management, concurrent control sub-system and so on.
There is a lot of works. However, we can use some existing software
to construct highly available Linux systems now.

Simple Theory

Because our client does not have access to more than one real (or
public) IP address, we set up our two-node cluster in a private
network environment. If you have access to three or more real/public
IP addresses, you can certainly set up the Linux cluster with real IP
addresses.

In this network a Cisco router was the gateway to the Internet, and it
consists of two IP addresses. The real one was connected to a DSL
modem for internet access.

The two-node Linux cluster consists of node1 (192.168.1.1) and

node2 (192.168.1.2) Linux servers. Depending on your setup, either
node1 or node2 can be your primary server, and the other will be
your backup server. Once the cluster is set, with IP aliasing (read IP
aliasing from the Linux Mini HOWTO for more detail), the primary
server will be running with an extra IP address (192.168.1.5). As
long as the primary server is up and running, services (e.g., DHCP,
DNS, HTTP, FTP, etc.) on node1 can be accessed by either
192.168.1.1 or 192.168.1.5. In fact, IP aliasing is the key concept for
setting up this two-node Linux cluster.

When node1 (the primary server) goes down, node2 will be take over
all services from node1 by starting the same IP alias (192.168.1.5)
and all subsequent services. In fact, some services can co-exist
between node1 and node2 (e.g., FTP, HTTP, Samba, etc.), however, a
service such as DCHP can have only one single running copy on the
same physical segment. Likewise, we can never have two identical IP
addresses running on two different nodes in the same network.

In fact, the underlining principle of a two-node, high-availability
cluster is quite simple, and people with some basic shell
programming techniques could probably write a shell script to build
the cluster. We can set up an infinite loop within which the backup
server (node2) simply keeps pinging the primary server, if the result
is unsuccessful, and then start the floating IP (192.168.1.4) as well
as the necessary dæmons (programs running at the background).

Hardware and Software Components

Hardware

To get started, you will need two Linux systems with at least one
network interface each (preferably two), or an available serial port.

Software

We need heartbeat software (http://www.linux-ha.org/download).

Heartbeat is a publicly available package written by Alan Robertson.
It provides the basic functions required by any HA system such as
starting and stopping resources, monitoring the availability of the
systems in the cluster, and transferring ownership of a shared IP
address between nodes in the cluster. Heartbeat is a software
solution that monitors the health of a particular service (or services)
through either a serial line or Ethernet interface or both. It is a vital
component of the whole Linux-HA package.

DRBD stands for Distributed Remote Block Device which is
produced by LinBit Information Technologies GmbH, provides data
mirroring between two servers on a LAN or WAN. (www.linbit.com)

Data replication with DRBD

DRBD is constantly under development, with the last major release
0.7. This release brings numerous enhancements (for example faster
resyncs and support for GFS.)

DRBD currently supports one to one replication (i.e. two node
clusters, where one node acts as a standby). It is anticipated that
DRBD will support one to many replication in the near future.

DRBD can be used to provide data replication between nodes for
nearly any application (E.g. Apache, Samba, NFS, Oracle and so on),
as well as being used as just an offsite data backup.

DRBD allows for a mirror to be paused, so allowing for backups of a
standby node to take place, although a full resynchronisation would
be required afterwards.

DRBD is available under the GNU General Public License (GPL), and
can be downloaded from drbd.org

DRBD with LifeKeeper

Individual Resource Monitoring ? Yes

Maximum Cluster Size ? 2 with DRBD. With Shared storage
up to 32

Suitable for WAN or LAN
environments ?

Yes

Local recovery possible ? Yes

DRBD with HeartBeat

Individual Resource Monitoring ? No, 3rd party applications required (e.g.
Mon)

Maximum cluster size ? 2 with, or without DRBD

Suitable for WAN or LAN
environments ? Yes

Local recovery possible ? No, unless using 3rd party software (e.g.
Mon)

Configuration files:

/etc/hosts

127.0.0.1 node1 localhost.localdomain localhost
10.0.0.1 node1
10.0.0.2 node2
193.68.121.200 cluster

/etc/fstab

LABEL=/ / ext3 defaults 1 1
/dev/nb0 /mnt/disk ext3 noauto 0 0
/dev/sda3 swap swap defaults 0 0

ha.cf

debugfile /var/log/ha­debug
logfile /var/log/ha­log
logfacility local0
keepalive 2
deadtime 30
warntime 10
initdead 120
udpport 694
#
Baud rate for serial ports...
#
#baud 19200
serial serialportname ...
#serial /dev/ttyS0 # Linux
#serial /dev/cuaa0 # FreeBSD
#serial /dev/cua/a # Solaris

What interfaces to broadcast heartbeats over?
#
bcast eth0 # Linux

auto_failback on
watchdog /dev/watchdog

node node1
node node2
ping 193.68.121.1
respawn hacluster /usr/lib/heartbeat/ipfail

drbd.conf

resource drbd0 {
 protocol = C
 fsckcmd = /bin/true

 disk {
 do­panic
 disk­size = 10317828k
 }

 net {
 sync­nice = ­18 # if synchronization is high priority for you
 sync­min = 500k
 sync­max = 100M # maximal average syncer bandwidth
 tl­size = 5000 # transfer log size, ensures strict write ordering
 timeout = 60 # unit: 0.1 seconds
 connect­int = 10 # unit: seconds
 ping­int = 10 # unit: seconds
 ko­count = 4 # if some block send times out this many times,

the peer is considered dead, even if it still
answeres ping requests

 }

 on node1 {
 device = /dev/nb0
 disk = /dev/sda2
 address = 10.0.0.1
 port = 7788
 }

 on node2 {
 device = /dev/nb0
 disk = /dev/sda6
 address = 10.0.0.2
 port = 7788
 }
}

haresources

node1 193.68.121.200 datadisk::drbd0 httpd vsftpd

authkeys

auth 1
1 crc
#2 sha1 HI!
#3 md5 Hello!

