Home    Решения    Услуги    Download    Публикации    Работа    Продукти    Документи
 

 

 
Print this page/Отпечатай тази страница  

 

Блокиране на процесите

превод Никола Колев ([email protected])




       Какво бихте направили, ако някой ви помоли да свършите нещо, а вие нямате възможност точно в този момент? Ако сте човешко същество, и ви притеснява някой друг човек, единственият начин е да кажете: "Не мога сега, зает съм! Разкарай се!" Но ако сте модул на ядрото и ви притеснява някой процес, имате още една възможност - да "приспите" процеса до момента, в който можете да го обслужите. В края на краищата кернелът постоянно слага разни процеси да спят и ги буди (по този начин изглежда, като че ли множество процеси работят по едно и също време на един и същ процесор).
       Този модул на кернела е пример за това. Файлът (наречен /proc/sleep) може да бъде отворен само от един процес едновременно. Ако файлът е вече отворен, модулът на кернела извиква module_interuptible_sleep_on. Тази функция променя състоянието на задачата (задачата, или task, представлява структура от данни на кернела, която съдържа информация за един процес и за системното обръщение в което е той, ако въобще има такова) към TASK_INTERRUPTIBLE, което означава, че задачата няма да тръгне отново, докато не бъде "събудена" по някакъв начин, и я допълва към WaitQ, опашката от задачи, чакащи достъп до файла. Тогава функцията се обръща към разписанието за контекстно превключване към различен процес - такъв, от който има някаква полза за CPU-то.
       Когато процесът е свършил работата си с файла, той го затваря, и се обръща към module_close. Тази функция събужда всички процеси в опашката (понеже няма механизъм за събуждане на само един от тях). След това се връща и процесът, който току-що е затворил файла, може да продължи да работи. По някое време определящият разписанието решава, че на този процес му стига толкова, и предава контрола над CPU-то на друг процес. Впоследствие на един от процесите, който е бил на опашката, му се дава контрол над процесора от разписанието. Той се стартира точно от мястото веднага след обръщението към module_interruptible_sleep_on. След това може да продължи, за да установи една глобална променлива, която да съобщи на всички други процеси, че този файл все още е отворен, и продължава да "живее". Когато другите процеси получат малко процесорно време, те поглеждат тази глобална променлива и се връщат да спят.
       За да стане животът още по-интересен, module_close няма монопол над събуждането на процесите, които чакат за достъп до файла. Един сигнал, като например Ctrl+C (SIGINT) може също да събуди процес. В този случай ние искаме незабавно да се върнем с EINTR. Това е важно, за да могат потребителите например да убият процеса преди той да получи файла.
       Има още едно нещо, което трябва да се запомни.Понякога процесите не искат да спят - те или искат да получат това, което им трябва, и то незабавно, или да им бъде казано, че това не може да стане. Когато отварят файла, тези процеси използват флага O_NONBLOCK. Предполага се в такъв случай кернелът да отговори с връщане на код за грешка -EAGAIN от операциите, които иначе би блокирал, като например отварянето на файла в този случай.

ex sleep.c


/* sleep.c - create a /proc file, and if several
 * processes try to open it at the same time, put all
 * but one to sleep */
/* Copyright (C) 1998-99 by Ori Pomerantz */

/* The necessary header files */
/* Standard in kernel modules */
#include    /* We're doing kernel work*/
#include    /* Specifically, a module*/

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==1
#define MODVERSIONS
#include 
#endif
/* Necessary because we use proc fs */
#include 

/* For putting processes to sleep and waking them up*/
#include 
#include 
/* In 2.2.3 /usr/include/linux/version.h includes a
/* macro for this, but 2.0.35 doesn't - so I add it
 * here if necessary. */
#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
#include   /* for get_user and put_user*/
#endif

/* The module's file functions ***********************/
/* Here we keep the last message received, to prove
 * that we can process our input */
#define MESSAGE_LENGTH 80
static char Message[MESSAGE_LENGTH];

/* Since we use the file operations struct, we can't use
 * the special proc output provisions - we have to use
 * a standard read function, which is this function */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t module_output(
    struct file *file,   /* The file read */
    char *buf, /* The buffer to put data to (in the
                * user segment) */
    size_t len,  /* The length of the buffer */
    loff_t *offset) /* Offset in the file - ignore */
#else
static int module_output(
    struct inode *inode, /* The inode read */
    struct file *file,   /* The file read */
    char *buf, /* The buffer to put data to (in the
                * user segment) */
    int len)  /* The length of the buffer */
#endif
{
  static int finished = 0;
  int i;
  char message[MESSAGE_LENGTH+30];
  /* Return 0 to signify end of file - that we have
   * nothing more to say at this point. */
  if (finished) {
    finished = 0;
    return 0;
  }
  /* If you don't understand this by now, you're
   * hopeless as a kernel  programmer. */
  sprintf(message, "Last input:%s\n", Message);
  for(i=0; i= KERNEL_VERSION(2,2,0)
static ssize_t module_input(
    struct file *file,   /* The file itself */
    const char *buf,     /* The buffer with input */
    size_t length,       /* The buffer's length */
    loff_t *offset)      /* offset to file - ignore */
#else
static int module_input(
    struct inode *inode, /* The file's inode */
    struct file *file,   /* The file itself */
    const char *buf,     /* The buffer with the input
*/
    int length)          /* The buffer's length */
#endif
{
  int i;
  /* Put the input into Message, where module_output
   * will later be able to use it */
  for(i=0; i= KERNEL_VERSION(2,2,0)
    get_user(Message[i], buf+i);
#else
  Message[i] = get_user(buf+i);
#endif
/* we want a standard, zero terminated string */
  Message[i] = '\0';
  /* We need to return the number of input
   * characters used */
  return i;
}

/* 1 if the file is currently open by somebody */
int Already_Open = 0;


/* Queue of processes who want our file */
static struct wait_queue *WaitQ = NULL;
/* Called when the /proc file is opened */
static int module_open(struct inode *inode,
                       struct file *file)
{
  /* If the file's flags include O_NONBLOCK, it means
   * the process doesn't want to wait for the file.
   * In this case, if the file is already open, we
   * should fail with -EAGAIN, meaning "you'll have to
   * try again", instead of blocking a process which
   * would rather stay awake. */
  if ((file->f_flags & O_NONBLOCK) && Already_Open)
    return -EAGAIN;
  /* This is the correct place for MOD_INC_USE_COUNT
   * because if a process is in the loop, which is
   * within the kernel module, the kernel module must
   * not be removed. */
  MOD_INC_USE_COUNT;
  /* If the file is already open, wait until it isn't*/
  while (Already_Open)
  {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    int i, is_sig=0;
#endif
    /* This function puts the current process,
     * including any system calls, such as us, to sleep.
     * Execution will be resumed right after the function
     * call, either because somebody called
     * wake_up(&WaitQ) (only module_close does that,
     * when the file is closed) or when a signal, such
     * as Ctrl-C, is sent to the process */
     module_interruptible_sleep_on(&WaitQ);

    /* If we woke up because we got a signal we're not
      * blocking, return  -EINTR (fail the system call).
     * This allows processes to be killed or stopped.*/

/*
 * Emmanuel Papirakis:
 *
 * This is a little update to work with 2.2.*. Signals
 * now are contained in two words (64 bits) and are
 * stored in a structure that contains an array of two
  * unsigned longs. We now have to make 2 checks in our if.
 *
 * Ori Pomerantz:
 *
 * Nobody promised me they'll never use more than 64
 * bits, or that this book won't be used for a version
 * of Linux with a word size of 16 bits. This code
 * would work in any case.
 */	
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    for(i=0; i<_NSIG_WORDS && !is_sig; i++)
      is_sig = current->signal.sig[i] &
        ~current->blocked.sig[i];
    if (is_sig) {
#else
    if (current->signal & ~current->blocked) {
#endif
      /* It's important to put MOD_DEC_USE_COUNT here,
       * because for processes where the open is
       * interrupted there will never be a corresponding
       * close. If we don't decrement the usage count
       * here, we will be left with a positive usage
       * count which we'll have no way to bring down to
       * zero, giving us an immortal module, which can
       * only be killed by rebooting the machine. */
       MOD_DEC_USE_COUNT;
       return -EINTR;
     }
   }
   /* If we got here, Already_Open must be zero */
   /* Open the file */
   Already_Open = 1;
   return 0;  /* Allow the access */
 }
 /* Called when the /proc file is closed */
 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
 int module_close(struct inode *inode, struct file *file)
#else
void module_close(struct inode *inode, struct file *file)
#endif
{
  /* Set Already_Open to zero, so one of the processes
   * in the WaitQ will be able to set Already_Open back
   * to one and to open the file. All the other processes
   * will be called when Already_Open is back to one, so
   * they'll go back to sleep. */
  Already_Open = 0;

  /* Wake up all the processes in WaitQ, so if anybody
   * is waiting for the file, they can have it. */
  module_wake_up(&WaitQ);
  MOD_DEC_USE_COUNT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  return 0;  /* success */
#endif
}

/* This function decides whether to allow an operation
 * (return zero) or not allow it (return a non-zero
 * which indicates why it is not allowed).
 *
 * The operation can be one of the following values:
 * 0 - Execute (run the "file" - meaningless in our case)
 * 2 - Write (input to the kernel module)
 * 4 - Read (output from the kernel module)
 *
 * This is the real function that checks file
 * permissions. The permissions returned by ls -l are
 * for referece only, and can be overridden here.
 */

static int module_permission(struct inode *inode, int op)
{
  /* We allow everybody to read from our module, but
   * only root (uid 0) may write to it */
  if (op == 4 || (op == 2 && current->euid == 0))
    return 0;
  /* If it's anything else, access is denied */
  return -EACCES;
}
/* Structures to register as the /proc file, with
 * pointers to all the relevant functions. ************/

/* File operations for our proc file. This is where
 * we place pointers to all the functions called when
 * somebody tries to do something to our file. NULL
 * means we don't want to deal with something. */
static struct file_operations File_Ops_4_Our_Proc_File =
  {
    NULL,  /* lseek */
    module_output,  /* "read" from the file */
    module_input,   /* "write" to the file */
    NULL,  /* readdir */
    NULL,  /* select */
    NULL,  /* ioctl */
    NULL,  /* mmap */
    module_open,/* called when the /proc file is opened */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
    NULL,   /* flush */
#endif
    module_close      /* called when it's classed */
  };

/* Inode operations for our proc file. We need it so
 * we'll have somewhere to specify the file operations
 * structure we want to use, and the function we use for
 * permissions. It's also possible to specify functions
 * to be called for anything else which could be done to an
 * inode (although we don't bother, we just put NULL). */

static struct inode_operations
Inode_Ops_4_Our_Proc_File =
  {
    &File_Ops_4_Our_Proc_File,
    NULL, /* create */
    NULL, /* lookup */
    NULL, /* link */
    NULL, /* unlink */
    NULL, /* symlink */
    NULL, /* mkdir */
    NULL, /* rmdir */
    NULL, /* mknod */
    NULL, /* rename */
    NULL, /* readlink */
    NULL, /* follow_link */
    NULL, /* readpage */
    NULL, /* writepage */
    NULL, /* bmap */
    NULL, /* truncate */
    module_permission /* check for permissions */
  };

/* Directory entry */
static struct proc_dir_entry Our_Proc_File =
  {
    0, /* Inode number - ignore, it will be filled by
        * proc_register[_dynamic] */
    5, /* Length of the file name */
    "sleep", /* The file name */
    S_IFREG | S_IRUGO | S_IWUSR,
    /* File mode - this is a regular file which
     * can be read by its owner, its group, and everybody
     * else. Also, its owner can write to it.
     *
     * Actually, this field is just for reference, it's
     * module_permission that does the actual check. It
     * could use this field, but in our implementation it
     * doesn't, for simplicity. */
    1,  /* Number of links (directories where the
         * file is referenced) */
    0, 0,  /* The uid and gid for the file - we give
            * it to root */
    80, /* The size of the file reported by ls. */
    &Inode_Ops_4_Our_Proc_File,
    /* A pointer to the inode structure for
     * the file, if we need it. In our case we
     * do, because we need a write function. */
    NULL  /* The read function for the file.
           * Irrelevant, because we put it
           * in the inode structure above */
  };

/* Module initialization and cleanup **************/
/* Initialize the module - register the proc file */
int init_module()
{
  /* Success if proc_register_dynamic is a success,
   * failure otherwise */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  return proc_register(&proc_root, &Our_Proc_File);
#else
  return proc_register_dynamic(&proc_root, &Our_Proc_File);
#endif
  /* proc_root is the root directory for the proc
   * fs (/proc). This is where we want our file to be
   * located.
   */
}

/* Cleanup - unregister our file from /proc. This could
 * get dangerous if there are still processes waiting in
 * WaitQ, because they are inside our open function,
 * which will get unloaded. I'll explain how to avoid
 * removal of a kernel module in such a case in
 * chapter 10. */
void cleanup_module()
{
  proc_unregister(&proc_root, Our_Proc_File.low_ino);
}